Направление: "Управление безопасностью и риском в сложных системах", научн. руководитель - проф., докт. физ.-мат. наук Б.П. Харламов


Полноформатные статьи, индексируемые в базах Web of Science и/или Scopus, опубликованные в рамках данного направления (с 2011 года):

 

1. B. P. Harlamov, O. V. Prourzin (2017) On an Interval of Faultles Work for a System of Two Independent Alternating Renewal Processes. Journal of Mathematical Science 225(5):818-832. DOI:10.1007/s10958-017-3498-x (link)

2. V. A. Prourzin (2017) Control of Elastic Plant Movement without Excilation on Eigen-oscilation. Automation and Remove Control  78(12):2141--2153. DOI: 10.1134/s0005117917120037 (link)

3. M. Ermakov (2017) On Consistent Hypothesis Testing. Journal of Mathematical Science 225(5):751-769). DOI:10.1007/s10958-017-3491-4 (link)

4. Boris Harlamov (2017) Stochastic Risk Analysis and Management. ISTE, Wiley, London. ISBN: 9781786300089 DOI: 10.1002/9781119388883 (link)

5. Shevlyakov G.L., Vasilevskiy N. (2017) Modification of Linfoot's Informational Correlation Coefficient.  Austrian J. of Statistics 46(3-4):99-105. DOI:10.17713/ajs.v46i3-4.675 (link)

6. V. A. Prourzin (2017) Control of elastic plant movement without excitation of eigen-oscillation. Automation and Remote Control 78(12):2141-2153. DOI:10.1134/S0005117917120037 (link)

7. Vladimir A. Prourzin (2017) General physical principle in dynamic model of reliability. International Journal of Risk Assessment and Management. 20(4):322-332. DOI:10.1504/IJRAM.2017.087902 (link)

8. Harlamov, B. P. (2015). Preservation of the markov property under delayed reflection. Journal of Mathematical Sciences (United States), 206(2), 217-229. doi:10.1007/s10958-015-2306-8   (link)

9. Rasova, S. S., & Harlamov, B. P. (2015). Nondecreasing continuous semi-markov processes: Asymptotics and asymmetry. Journal of Mathematical Sciences (United States), 204(1), 148-154. doi:10.1007/s10958-014-2193-4    (link)

10. Harlamov, B. P. (2014). Semi-markov approach to the problem of delayed reflection of diffusion markov processes. Theory of Probability and Mathematical Statistics, 89, 13-22. DOI: http://dx.doi.org/10.1090/S0094-9000-2015-00931-5   (link)

11. B.P. Harlamov (2012) Stochastic model of gas capillary chromatography. Communication in Statistics - Simulation and Computation, 41 (7): 1023-1031, doi:10.1080/03610918.2012.625782 (link)

12. B.P. Harlamov (2011) On delay and asymmetry points of one-dimensional diffusion processes. Journal of Mathematical Sciences, 176 (2): 270-280, doi:10.1007/s10958-011-0417-4 (link)

13. S.S. Rasova, B.P. Harlamov (2013) On motion of Brownian particles along a delaying screen. Journal of Mathematical Sciences, 188 (6): 737-747, doi:10.1007/s10958-013-1165-4 (link)

Федеральное Государственное Бюджетное Учреждение Науки

Институт Проблем Машиноведения 
Российской Академии Наук (ИПМаш РАН)