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Two sets of explicit elliptic solutions, parametrized by an arbitrary bolomorphic function are presented for the two- 
dimensional Toda chain A] 1), obtained by means of reduction from 0(3) and O(2,1) o-models, having elliptic solutions, 
parametrized by an arbitrary function. A particular case - the sinh-Gordon equation is considered. 

1. Algebraical, geometrical and analytical aspects 
of the theory of non-linear differential equations have 
been actively investigated recently. One of the prob- 
lems appearing here is the problem of obtaining solu- 
tions of corresponding equations in explicit form, As 

known the general solution must be parametrized 
by the 2n arbitrary functions in the case o f n  equa- 
tions. Examples are well known: the Liouville equa- 
tion, the Toda chain [1]. But in the last case, when 
the chain corresponds to the Caftan matrix of the 
Kac-Moody algebra, the solution is expressed in the 
form of infinite series of very complicated structure 
and its use is difficult for applications (for instance, 
in quasiclassics). It is reasonable to reject a number of 
arbitrary functions in the resulting expression and due 
to it to obtain a formula no more complicated than 
the Liouville formula. In the present letter such for- 
mulae are presented for the case of the simplest two- 
dimensional Toda chain corresponding to the Cartan 
matrix of the Kac-ivloody algebra A }1) [2]. This re- 
sult is obtained by means of the following principle 
with the use of the results obtained by one of the 
authors earlier [3]. The local correspondence between 
0 (3 )  and O(2,1) o-models and the Toda chain under 
consideration is obtained which enables us to recal- 
culate the solutions of the initial chiral model into 
the solutions of the reduced model [3]. In its simplest 
case this construction enables us to obtain the formu- 
la for the solution of the Liouville equation from the 

instanton sectors of 0 (3)  and O(2,1) o-models. In the 
case considered in this letter the solutions of the ini- 
tial chiral models, lying out of their instanton sector 
are recalculated. The second element of the construc- 
tion is the rather large class of solutions of the initial 
chiral model. For the case of 0 (3 )  and O(2,1) a-mod- 
els such solutions were obtained by one of us [4]. 
They are the generalization of recently obtained ellip- 
tic solutions of the 0(3)  o-model [5,6], lying in the 
class of singular harmonic mappings [7], and they are 
parametrized by an arbitrary holomorphic function, 
and this is the most significant fact for the construc- 
tion presented. 

2. The action of the 0 (3 )  (O(2,1)) o-model is: 

S = f h ( u ,  ff)(Uzff Z + U~Uz)d2x, (1) 

where u = u(z, 2) is the initial chiral field, z = x I + 

ix2, 2 = x 1 - ix 2 in the euclidean metric, z = x 1 + 
x2, 2 = x 1 - x 2 in the Mirukowski metric. 

h = ho(3) = (1 + uu~ -2  , (2) 

for the case of the 0 (3 )  o-model and 

h = ho(2,1) = (u + ~) -2  , (3) 

for the case of the O(2,1) o-model they are metrics 
on the groups 0 (3 )  and O(2,1). The equation of mo- 

tion is 
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huz f  + (3h/3u)UzU ~ = 0.  (4) 

As shown in ref. [3], when using some variant of  the 
general relativity principle, it is possible to come from 
the field, defined on the manifold with non-trivial 
curvature - the initial chiral field, the lagrangian of  
which contains only the kinetic term, to the new dy- 
namic variables given on the flat manifold, but having 
also the potential term in the lagrangian. That is if u 
are the solutions of  the equations of  motion (4), (2), 
(3), lying out of  the instanton sector (u = u(z), u~- = 0; 
v = v(5), v z = 0) and B 1, B 2 are the new dynamic vari- 
ables built of  the formulae 

expB 1 = huzffy,  expB 2 = h u f f f  z ,  (5) 

they satisfy the equations of  the two-dimensional 
Toda chain corresponding to the Cartan matrix of  the 
Kac-Moody  algebra [1,2]: 

B 1- + 2 exp B 1 T- 2 exp B 2 = 0 ,  
Z Z  - -  

B 2 - ; - 2 e x p B  1 + 2 e x p B  2 = 0 .  (6) 
Z Z  

The upper sign corresponds to the 0 (3 )  o-model, the 
lower one to the O(2,1) o-model. 

3. Let f = f(z) ,  ]z = 0 be an arbitrary holomorphic 
function, then the solution of  the equation of  motion 
of  the 0 (3 )  o-model (4), (2) is [4]: 

u = ( ~ + k  sn ln( f f ) l /2) l /2  f(__f__f/2 (7) 

- k sn ln(f]) 1/2 

and for the O(2,1) o-model (4), (3): 

u = exp c 1 x[cn(y/k)  + i sn(y/k)] , (8) 

where 

x or y = ½1n[f(z)f(5)] 

or (1/2i)ln[f(z)/f(-£)] (9) 

(one of  the two) sn, cn are elliptic Jacobi functions 
with parameter k, in formula (8) k = (1 + c~)- l /2 .  
Further we shall only consider the interval 0 < k < 1. 
It should be pointed out that analogously to (8), (9) 
in the 0 (3 )  o-model not only one formula (7) may be 
written but two (see ref. [4] ). Formulae ( 7 ) - ( 9 )  and 
the following are written for the euclidean case, in the 
Minkowski case the solution is parametrized by the 
two arbitrary real functions depending on the light- 
cone variables instead of  one holomorphic function. 

4. If the formulae (7) - ( 9 )  are inserted in expres- 
sion (5) we shall obtain the following formulae for 
the solutions of  the Toda chain (6): 

exp B 1 = ~ [kcn(~lnff-)  + dn(½1nf f ) ]2 f z f J f f  ,(10) 

exp B 2 = ~6 [kcn(½1nff) - d n ( l l n f f ) ]  2 f z f J f f  , 

generated by the 0 (3 )  o-model and 

expB 1 = [Cl + k - l d n ( y / k ) ] 2 f z f ~  

16cn2(y/k) f f  ' 

exp B 2 = [cl - k - l d n ( y / k ) ]  2 fzf~ 

16cn2(v/k) fjv , (11) 

generated by the O(2,1) o-model. Here f = f ( z ) , f f  = O, 
is an arbitrary holomorphic function. The solution 
parametrized by the antiholomorphic function g = 
g(5), gz = 0 can be put down by changing ff-+gg, 
fz f~ -+gigz. In formula (11)y  is given by formula 
(9). So we obtained two unconnected sets of  solutions 
for the Toda chain (6). There arises the question of  
the number of  such formulae. 

5. Let us consider the formulae for a particular 
case, that is the sinh-Gordon equation. Imposing the 
conditions B 1 = - B  2 = B leads to constraints on the 
arbitrary function f ( z )  in formulae (10), (11), res- 
pectively, 

f z f J f f  = 16/(1 - k2) ,  (1 2) 

and 

f z f z / f f  = 16. (13) 

Then the solution of  the sinh-Gordon equation 

Bzz + 4 sinh B = 0 

has the form 

sinh B = [2k/(1 - k2)] cn q~ dn q~, (14) 

obtained from the 0 (3 )  o-model and 

sinh B = (2c I /k)  dn(~/k) /cn2(~/k) ,  (15) 

obtained from the O(2,1) o-model, where in (14)ad 
= 16/(1 - k2), in (15) ad = 16 and 

~, = ½(az + ae + b + 5) , 

o r  

,~ = (1/2i)(az - az + b - F)), 
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where b is a complex constant. There also appears the 
question of classification of all the formulae of type 
(14), (15). It should be pointed out that the constraints 
(12), (13) can be looked upon not as equations on the 

function f(z), but as equations on the curves in the 
z-plane along which the formulae for the solutions of 
the sinh-Gordon equation obtained from (10), (1 l)  
satisfy the equation without constraints on tile func- 

tion: tile fornmlae for the solutions are so to say pa- 
rametrized by the curve in the z-plane (see also ref. 
[3] for the case of tile Dodd-Bullough equation and 
ref. [4]). It should be pointed out that when obtain- 
ing the formulae (14), (15) we get from (12), (13) 
f(z) = exp(az + b). It leads to the conclusion that 
formulae ( 7 ) - ( 9 )  are not appropriate for the case of 
singular harmonic mappings considered in refs. [5,7]. 
It should also be noted that the number of arbitrary 
holomorphic functions by which the solution is para- 
metrized (10), (11) can be increased by nreans of 
some natural procedure of complexification [8]. It 
should be pointed out that close results are also ob- 
tained for the Ernst equation [4], where a more de- 
tailed consideration of some questions can be found. 

One of us (M.G.Z.) would like to thank V.N. Popov. 
M.A. Semenov-Tian-Shansky and A.N. Fedorova for 
the useful discussions. 

References 

[1] A.N. Leznov and M.V. Saveliev, Comm. Math. Phys. 74 
(1980) 111. 

[2] J. Lepowsky and R.L. Wilson, Comm. Math. Phys. 62 
(1978) 43. 

[3] M.G. Zeitlin, Zap. Nauchn. Semin. LOMI (Lcningrad) 
101 (1981) 194; 
A.A, Bytsenko and M.G. Zeitlin, Phys. Lctt. 88A (1982) 
275; Teor. Mat. Fiz. 52 (1982) 63. 

[41 M.G. Zeitlin, Teor. Mat. Fiz. 57 (1983) 238; 
V.E. Chelnokov and M.G. Zeitlin, Phys. Lett. 99A 
(1983) 147. 

[5] G. Ghika and M. Visinescu, Z. Phys. CI1 (1982) 353. 
[6] R.B. Abbott, Z. Phys. C15 (1982) 51. 
[7] J. Eells and L. Lemaire, Bull. London Math. Soc. 10 

(1978) 1. 
[81 V.E. Chelnokov and M.G. Zeitlin, submitted to J. Phys. A. 

278 


