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By using the reduction from the microscopic model of 3He films to the chiral 0(3) o-model possible vortex solutions are 
considered. 

1. Recently there have been experimental studies 
of  thin 3He films one or two atoms in thickness [1].  
In ref. [2] a microscopic model o f  the 3He film was 
suggested, based on the 3-dimensional model of  3He 
developed earlier [3].  As shown in ref. [2] ,  in two 
dimensions there may exist several superfluid phases, 
two of  them being energetically preferable and stable 
under small fluctuations (the so-called a and b phases). 
The Bose-spectrum of  the system in question contains 
both phonon and nonphonon branches. The order 
parameter in such a theory is a 2 × 3 matrix. The Bose- 
condensate cannot exist in two-dimensional systems 
at f'mite temperatures. Nevertheless we can expect 
such a system to be a superfluid because the long-range 
correlations decrease more slowly than exponentially 
at large distances. In ref. [2] it was demonstrated that 
if we introduce an analog of  polar coordinates for ten- 
sor Bose-fields, we can show that the long-range be- 
haviour o f  the field correlator is determined by the 
behaviour o f  the correlator of  angle variables, as in the 
two-dimensional superfluidity theory [4]. The num- 
ber of  such angle variables is equal to the number o f  
phonon modes of  the system. The angle variables in 
the a-phase are the angle ¢ E S 1 and the vector n E S 2 
C R  3. 

The action functional for "slow" fields is 

s = - f (a a, ai + b na ai na) d2x- (1) 

Here a , b  are real constants , /=  1, 2 ,a  = 1, 2, 3. 
So in this approach the problem o f  the long-range 

behaviour of  correlators for 3He-films is reduced to 
the investigation of  the 0(3)  o-model [5].  In particu- 
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lar, the existence or nonexistence problem of  super- 
fluidity is reduced to the problem of  the long-range 
behaviour o f  the two-point correlator in the 0(3)  o- 
model. 

It would also be interesting to investigate classical 
solutions corresponding to the action (1), in particu- 
lar, possible vortex solutions (periodic with respect to 
the coordinates of  the fields na). 

2. As one can see from (1), the field ~ is free and 
unrelated to the n a fields, so only the n field is of  in- 
terest. 

In order to build up vortex solutions in the model 
under consideration we shall follow ref. [6] where two 
Ans~itze for solutions o f  the 0(3)  o-model parametrized 
by an arbitrary function are considered. Let us intro- 
duce the complex field 

u = (n 1 + in2)/(1 + n3) ,  (2) 

instead of  the n a-fields. The equation o f  motion cor- 
responding to the action (1) is 

huz~ + ( ah/au)  UzU- z = o .  (3) 

Here h = (1 + uu-) -2  is a metric on the sphere S 2 , z = 
_ 1  

Xl + ix2, z- = Xl -- ix2, az - ~ (bx 1 -- iax2) 'x  1 ,x2  
are coordinates on the euclidean plane I:12 . 

We shall apply the first Ansatz in accordance with 
ref. [6] in the form 

u = A ( x )  exp [iB(y)] , 

where 

x = x ( z , ~ ) ,  y = y ( z , ~ ) ,  Xz-~=yz~=O , 

(4) 
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X z y - ~ + x - i y  z = O ,  XzX- i = y z y - i ,  x = ~ ,  y = y .  

(5) 

We do not constrain the field u by any conditions, and 
after the system (4), (5) is solved we obtain a formula 
parametrized by an arbitrary holomorphic function. 
Considering only the simplest case (in the general case 
there are three constants more), we have 

u = [(1 + k sn x)[(1  - k sn x)] 1/2 exp(iy).  

The system (4), (5) is satisfied, for instance, if we set 

1 Inff, y = (1 /2 i )  In (f/f) (6)  x = ~  

H e r e f  = f ( z ) , f -  i = 0 is an arbitrary holomorphic func- 
tion, k E [0,1] is the parameter of  the Jacobi elliptic 
function sn. 

In the case f  ~" z n this solution was considered in 
ref. [7],  but  the general solution was not obtained 
there because the field u was required to have a fixed 
asymptotic behaviour at z -> oo. For instance, in ref. 
[7] it was impossible to consider the ease l  "~ exp z 
which we discuss here, and it was impossible to use 
the solution with a functional parameter. 

So we obtain 

u-(- I + k  sn(~_~lnff)~l/2 
(f/:)l/2. (7) 

1 -- k sn(½ 

The second Ansatz is 

u = A ( x )  exp [iB(x)] , 

x = x x a  = 0 ,  (8)  

(in ref. [6] it was considered for the case o f  the 0(2 ,  
1) o-m0del and the Ernst equation). 

It also gives the solution, parametrized by an arbi- 
trary function 

u c s - "~-x !  exp[i arctan(s tan x)] 

_ cosx + is sin x (9) 
1 - c  sinx 

Here c, s are real constants, c 2 + s 2 = 1, and x is given 
by (6). 

3. The general solutions (7), (9) also contain peri- 
odic configurations (in the coordinates x 1, x2)" One 
can regard them as vortex solutions. For the n field 
solutions given by (7) in the special c a s e / =  exp(c 1 + 
ic2)z  we have 

n 1 = dn(ClX 1 - c2x2)  cos(c lx  2 + C2Xl), 

n 2 = dn(ClX 1 - c2x2)  sin(ClX 2 + C2Xl),  

n 3 = - k  sn(clx I - c2x2).  (1(3) 

Here Cl, c 2 are some constants, dn is the elliptic Jacobi 
function. I f c  2 = 0 (c 1 = 0) we found the elliptic be- 
haviour along one axis x 1 (x2) and the trigonometric 
one along the other axis x 2 (Xl). 

The solution (9) gives 

n l = c o s x ,  n2  = s s i n x ,  n3  = - c  s i n x  , 

c 2 +s  2 = 1. (11) 

Taking the same func t i on fwe  have x = ClX 1 - c 2 x  2 

i n ( l l ) .  
Let us note that (10) depends on two variables, 

whereas (11) contains only one variable. The vortex 
lattices (10), (11) in some sense are the analogs of  the 
Abrikosov lattice in the theory of  superconductivity. 
The stable superfluid state may arise if the condition 
of  the action extremum (1) is fulfilled. This is the case 
for the classical solutions (10), (11). 

The absolute minimum of  the action (1) is realized 
on the instanton solution corresponding to the har- 
monic mapping S 2 --> S 2. In our case we deal with the 
mapping R 2 --> S 2 and obtain the instanton solution 
from the general formula (7) if we take k = 1, 

q 

i~= l z - a i u = / ( z )  = 
• = z - b  i 

We hope to discuss the stability problem for the 
solutions (10), (11), as well as the one for vortex solu- 
tions in the b-phase (where there exist two "connected" 
0(3)  a-models), in a separate paper. 
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