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Abstract. If a hyperelastic material is isotropic, the amplitude vector on the equilib-
rium surface of the deformation gradient discontinuity can be represented as an isotropic
function of the strain tensor on one side of this surface and the normal to the surface.
We analyze the consequences of this representation. Particular attention is given to the
nontrivial zero jump solutions. The developed procedure for the zero jumps zome con-
struction in the strain space is illustrated by the consideration of some compressible and
incompressible materials. Correlation between the ellipticity at given deformations and
nontrivial zero solutions is studied.
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1 INTRODUCTION

Ellipticity of elastic materials has been the subject of much investigation. (See e.g.!~!!
and references cited therein.) Among others one can note the following reasons to study
ellipticity:

* The strong ellipticity requirements can be used in rejection of the constitutive equations
in the sense that “a good material is an elliptic one”.

* Strain localization, shear failures and crack problems in finite elastostatics are accom-
panied by a failure of ordinary of ellipticity at some deformations.?3

x Deformations with discontinuous gradients play a key role in the current theories of
phase transformations in elastic bodies. Such deformation field can exist only if ellipticity
fails at some deformations®*7%12. The non-ellipticity zone of necessity crosses the phase
transition zone formed by all deformations which can coexist at the phase boundary®!4.

The last circumstances have a dominant role in our consideration. In Section 2 we recall
the relevant notions of strong and ordinary ellipticity and introduce the concept of a zero
jumps zone. In Section 3 we reformulate the jump conditions on the shock surface in
isotropic compressible and incompressible materials in terms of deformation and orien-
tation invariants’® and give some preliminary analysis of admissible jumps. Section 4 is
devoted to the consideration of small jumps of strains and the zero jumps zone construc-
tion in a space of deformation invariants. The problem is discussed in the context of the
ellipticity examination.

2 ZERO JUMPS ZONE AND ELLIPTICITY

Let F, W (F) and U be the deformation gradient tensor, an elastic potential and a set
of unit vectors respectively. An elastic material is said!~7 to be ordinary elliptic at F if

detQ(F,N)#0 VN el (2.1)
and strongly elliptic at F if
e - QF,Ne>0 Ve NeclU (2.2)

where Q (F,N) is the acoustic tensor. If C(F) = Wgr is the elasticity tensor, then
Qix (F,N) = Ciji (F) N;N;, N €lUd. One can reformulate (2.2): the material is strong
elliptic at F if and only if

detQ(F,N)#0 VNel, 3IN,: @QFN,)>0 (:=1,2,3) (2.3)
where @); are the eigenvalues of Q.

It is known®*%%12  that a loss of strong ellipticity at some deformation is a necessary
condition for the existence of equilibrium piecewise homogeneous strain fields with the
surfaces of discontinuity in deformation gradients at continuous displacements.
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We consider a surface I' (a shock surface) of the discontinuity in the deformation gradient
which satisfies the kinematic Hadamard condition

[Fl=f®N (2.4)
and the traction continuity condition
[SIN=0 (2.5)

where S = Wg is the Piola stress tensor, []= ()" = (-)” denotes the jump of a function
across I', indexes “+” identify the values on different sides of the shock surface, N and f
are the unit normal on I" and amplitude vector in the reference configuration. In view of
(2.4) the traction continuity condition (2.5) takes the form

(S(F+f®N)—-S(F))N =0 (2.6)

and can be considered as the equation in f at given F = F_ and N or the equation to
determine a two—parameter family of shocks {f,N} at given F. This equation has the
trivial solution f = 0 at any F and N.

The condition (2.6) can be satisfied at f # 0 only if*'2 on the segment F () = F_+nfQN
(7 €10,1]), which connects F_ and F,,

BF()’: F(no)i fQ(Fo,N)f =0

Note that the material can be strongly elliptic at coexisting gradients F (see e.g.71314),

Now suppose that f = ce, where e €U, 0 <e 1 If W(F) is smooth enough,
equation (2.6) takes the form

e(Q(Fo,N)e+o0(e)) =0 (2.7)

At e # 0, e — 0 it follows from (2.7) that Q (Fo,N)e — 0. Consequently, if (2.6) has
nontrivial zero solution at F, then

dN,ecld: Q(F,N)e=0 (2.8)
which gives
IN€eU: det Q(F,N)=0 (2.9)

At given F the equation (2.9) can be considered as the equation for the one-parametric
family of unit normals N assisted by the one—parametric family of the vectors e.

Definition. Deformation gradients F at which the equation (2.6) besides trivial has only
nontrivial zero solutions form the zero jumps zone JF.
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Further we develop a procedure for the zero jumps zone construction in a case of isotropic
material. It should be stressed that the loss of ordinary ellipticity is a necessary condition
providing the existence of nontrivial zero jumps and we will demonstrate finite jumps
which are also possible if (2.9) is met. But these jumps are allowed at given values
of deformation invariants if and only if at least one of the Baker-Ericksen inequalities
degenerates into the equality. Note that checking of the Baker—Ericksen inequalities as well
as the developed procedure for the zero jumps zone construction seem to be more simple
then the direct examination of det Q (F,N). Now we do not formulate the restrictions
on elastic potentials at which the other finite jumps are not allowed by (2.9), but the
direct consideration of some classes of elastic materials shows that the examination of
strong ellipticity can be reduced to the construction of the zero jumps zones. Note also
that the zero jumps surface is a part of the phase transition zone13 14 and, consequently,
is of interest irrespective of ellipticity.

3 JUMP CONDITIONS IN TERMS OF DEFORMATION AND ORIEN-
TATION INVARIANTS

The conditions (2.4), (2.5) can be rewritten as
F,-F_=a.@nF, [Tn=0 (3.1)

where n € U and az = |FIn|!f are the normal to the shock surface and amplitude in
the actual configuration, T is the Cauchy stress tensor.

Let B = FFT is the left Cauchy—Green deformation tensor, e; and A; > 0 (i = 1,2,3) are
the eigenvectors of B and principal stretches, I; = A} + A5+ A3, [o = A2AZ+ )\2)\2 + A2
J = A2z are the deformation invariants. We also 1ntroduce the orientation invariants*®

Ny =n-Bfn k=41,£2, ... (3.2)

Due to the Caley—Hamilton theorem only two such invariants are independent. At given
B a couple of orientation invariants (N;, N;) (¢ # s) determines the normal n by the
system of equations

Son=1, D nit= (k=st), m=n-e (3.3)

which is linear with respect to n? (i = 1,2,3).

Since the solution of the system (3.3) has to be non—negative, the admissible values domain
D, for orientation invariants Ny, N; is a triangle with vertexes (A2%,A*) (i = 1,2,3) lying
on the skeleton curve N, = Ni/*. The vertexes (A2, A?) correspond to n = e;, points of
the i — j — side of the triangle correspond to n lying in the ¢ —j —principal plane of B. The
triangle D,; degenerates into the segment or the point if A\; = A; # Ay or AL = A2 = A3
respectively.
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Using (3.1); one can arrive the following relations'3 between the deformation invariants
on different sides of the shock surface:

j—j = l+a'n (3.4)
[I,] = 2a-B_n+Na-a (3.5)

2
[%J = <§i> a-Blla— 25—;a ‘B 'n (3.6)

where a = a_. It follows from (3.4)

:(1—%)n+7r (3

where 7 = Pa, E and P = E — n ® n are the unit tensor and projector.

If the material is isotropic, then

W = W(h,LJ), T=pmE+muB+u B
po = Wi+ 2J7 LWy, py =2J7 Wy, p_y = 2JW,

where Wy, W,, W5 denote OW /014, OW /08I, and OW/8J respectively.

Projecting the traction vector Tn onto the normal n and plane tangent to the shock
surface we arrive

o] + [N + [p1N_y] = 0 (3.8)
4PBn] + [, PB ] = 0 (39)

Equation (3.8) can be rewritten as

~3 09 =il 5+ i) (5 - ) (3.10)

Notice that

[ﬂ} _ o, [.fi _ Nq} =0 (3.11)

due to the kinematic condition. So we do not show indexes “+£” when write 1}121 and
(% — No).

In a case of incompressible materials W = W (I, 1)

T=-pE+m;B+u B! p =2Wy, p_y =2W,
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The condition for the normal component of the traction determine the jump of the reaction
p in dependence on deformation and orientation invariants '

[p] = 2 [Wh] My + [Wy] (12 — Na) (3.12)
The equation (3.9) for the tangent component of the traction takes the form
Wi Ny n+J2W;PBZ'nr = — [W1]PB_n + J%2 [W,]PBI'n (3.13)
and leads to the following representative

Theorem.® Assume that the material is isotropic and on the shock surface

N- 2 I 2

N iy (B ) Wi (95)" 40 (3.14)
Then the amplitude a can be uniquely presented as the isotropic function of the strain
tensor B_ and the normal n

a=+n+aB_n+3BI'n (3.15)
moreover
J+
a= :]‘— —1)n+ C!tl + Bt-l (316)

where t; = PB_n, t_; = PB ™ !n, the coefficients o and B are the functions of the
deformation and orientation invariants and can be evaluated from the system of linear
equations

NyW W a\ (W ] .
(o vy ) (5)= (7)o 0
(3.17)
or
2
[WI] -+ >\k+ [WZ] ’ ﬁ =0 Zf nE = O, n;n; # O, )‘z ?é )‘j (318)

o =
Ny (Wi + 23, 77)
The theorem remains true for the incompressible materials, one needs only to set J = 1.

Note that (3.16) means that n = at; + Bt_, where t; = t_; =0 if and only if one of
the following conditions is met:

(a) n=e; (b) ne = 0, AU 75 0, >\i—— = )\j_ (C) B_ = /\2E (319)
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In these cases m = 0. For brevity we will not dwell on (b) and (c). Another degeneracy of
the basis (t;,t_1)is t; || t_; # O that happens if and only if ngy = 0, nyn; # 0, A; # ;.
In the latter case

tl = ()\zz_ — A?_) n;n; (nje,- - niej), t_l = —/\:_2/\;_2131 (320)
and the vectors 7= (a— ﬁ)\‘z)\‘ )t1 and n lie in the ¢ — j —principal plane of B_ (plane
jumps); in (3.18) we renamed a — S 2/\ - a.

Among the consequences of (3.16) — (3.18) may be listed the following ones:

Wi = const, Woy=const=7n=0, a= <§— — 1) - (3.21)

(W]

2 pB . n (3.2
Wi N (3.22)

W = W(,J) (=1 or 2):»5.:(?';j 1>

The representation (3.15) has been used in the construction of phase transition zones3!*
(an additional thermodynamic condition was added to the conditions (2.4), (2.5)). In this
paper we study discontinuous solutions irrespective of the thermodynamic condition.

The function

+
D=5 )+ (% - v wiwy - owpy

is linear in N{", N*;. On the i — j—side of the triangle Dj

Ji
= - N& =S5+ XN, Npe MDA (3.23)
D= J+ (Wi + A2 W) (NFWE + A2 2 W5
Maxima and minima values of D are reached at the vertexes of the triangle D;_; and
are among the values A2, J:% (Wi + A W5") (Wi + A2, W5"). Thus at given I, IS, J,,
D#0 VYN;',N* €Dy, if and only if
Wit + X W5 >0 (k=1,2,3) or W7+ _W;5<0 (k=1,2,3) (3.24)

Recall that if the material is strongly elliptic at I7, I, J,, then Wi + A2 W5" > 0
(¢ =1,2,3) (the Baker—Ericksen inequalities). It follows from (3.24) that if

3N N* €Dy : D(N{, NI |}, I, J.) =0 (3.25)

thenamong Ay (i = 1,2,3) there exists Ay : Wi + A2, W, < 0, thus ordinary (and
strong) ellipticity fails. The traction condition (3.13) is satisfied at Vx if D = 0. Note,
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that the equality D = 0 is compatible with the conditions (3.10), (3.13) if the additional
restrictions on the derivatives of W (I3, I3, J) are satisfied. '

Kinematic relations (3.4) — (3.6) give [I;] = [Iz] = [J] = 0 if a = 0. On the other hand, if
[I;] = [I2] = [J] = 0, then (3.4), (3.5) give

a=7=-2N't; (3.26)

One can check that conditions (3.6) and (3.10) are satisfied. The condition (3.13) takes
the form

Wity — J2Wat_y =0 (3.27)

In the cases listed in (3.19), a = 0 and (3.27) is fulfilled because of t; = f_l = 0. In the
other cases it follows from (3.27)and (3.20) that jumps at which

[L]=[L]=[J]=0 and a#0 (3.28)
satisfies kinematic and traction conditions only if at I3, I, J

W1 = W2 =0 (n1n2n3 ;é 0)

Thus, these jumps are allowed only if ordinary ellipticity fails at I, I, J and are impossi-
ble if D # 0. The above consideration demonstrates the shocks for which the deformation
invariants are continuous, despite that fact that deformation gradient is discontinuous.

In plane elastostatics relationships (3.29) determine a line on the (\;, A;)—plane at fixed
M. A shear modulus is zero on this line. It can be shown that deformations on the different
sides of the shock surface differ only by the sign of the shear parameter & = |A; — A;l.
Thus we reproduce the result presented by Rosakis®.

We emphasize that the solution (3.28) as well as the equality D = 0 are not allowed if
the Baker—Ericksen inequalities are satisfied at given I, I, J.

Assume D # 0 VN;,N*, € Df_,. Then after the substitution (3.16) into (3.5), (3.6) we
obtain the system of five equations which are (3.10), (3.17) and transformed (3.5) and
(3.6). These equations can be considered as the system to determine seven unknowns It,
I, Ji, @, B, N; and N7,as the functions of I7, I3, J_. The solution of this system, if
exists, gives two—parameter family of jumps.

In a case of incompressible material the equation (3.12) is split and determine two—
parameter family of [p].

In plane elastostatics after the substitution (3.16), (3.18) and (3.23) into (3.5), (3.6) we
arrive the system of three equations ((3.10) is added) for four unknowns I7, I3, J and
N7 . The solution gives one-parameter family of jumps.
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4 ZERO JUMP LINES AND ELLIPTICITY

With the small jumps of strains in mind one can linearize the above mentioned system of
equations and arrive the linear system of five equations for five unknowns (], [5], [J], &
and 8

N, 1
TI[J]— sl +a(No=Nf)+ 81~ NNy =0
1/(1 1
7 (722 - N-l) ]+ 272 L] + a(l— NiNL)+ 8 (N—2 - N-z—l) =0
ng [J] -+ W11 [.[1] =+ le [IQ] -+ N1W101 -+ Wzﬂ =0
N. I
Waa [J] + Wiz [B] + W (L] + NiWaa — (320, + <J—22 - N_1> W)B=0  (41)
N1 [2 W 1 J
ﬁ(W1+JW13)+ ﬁ—N_l ( 2+JW23)+§W33 [ ]+
N I 1
(71Wu + (J—j, — N_1> JWiy + §W13> L]+
Ny I 1
(—fwlz + (332 - N_1> JW22 + §W23> [12} = O

Recall that among the orientation invariants Ny, Ny, N_;, N_, only two of them are
independent. We assume nineng # 0. The other cases can be considered analogously.

We imply that D # 0 and, consequently,
a=0<={[1]-0,[L]—0[J] - 0}

At given I, I, J the system (3.18) has only the trivial solution Ll=[Ll=[J]=a=
B =0 if and only if

H(Il’ '[27 J7 NS, Nt) ;é 0 V(N.h Nt) € Dst

where H is the determinant of the system (3.18). Then nontrivial zero solutions corre-
spond to the zero jump lines on the N;, N; — plane:

H(N.97 Nt’II; I2a J) =0 (N.s'7 Nt) S Dst

The zero jumps zone in the space of deformation invariants is determined by the system
of inequalities

Hmin (Ily -[27 J) _<_. 0 S Hmax (Ila 127 J) (42)
Wi+ XWo>0 (k=1,2,3) or Wi+ MW, <0 (k=1,2,3)
Hmin (Il, .[2, J) = min H(Ns, Nt l Il, 12, J)

(Ns 7Nt)€Dst

Hma.x (117 127 J) = (NS%SDE(D”H(NS, Nt’I].; 12) J)
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The zero jump zone construction is reduced to the investigation of the polynomial function
of two variables Ny, N;. Now we can formulate '

Proposition. If the material is strongly elliptic at I, Iy, J, then

Huin (Il, I, J) >0 or Hoax (Il, L, J) <0 (43)
Wi + /\fmnWQ >0, W1+ A?ma.xWQ >0 (44)

2 (Wi + (I = Mug) Wa) + 4Naq (Waa +2 (B — Nog) Waa + (I = X2)” Wiz +
Jz)\?ndW33 +J (W13 + (.[1 — A?nd) W23) >0 (45)

where Amin, Ama and Amax 07T€ the minimal, intermediate and mazimal values of the
principal stretches.

The relationship (4.5) implies that Otma/OAma > 0, where tyq is the principal Cauchy
stress corresponding to the eigenvector enq of the tensor B.

If the loss of ordinary ellipticity is also a sufficient condition for the nontrivial zero jumps
existence or the equality D = 0, then “if” in the above Proposition can be replaced by
“if and only if”.

To illustrate the above ideas we considered some known classes of compressible and in-
compressible elastic materials. Below is given one of the examples. ‘

Hadamard materials are materials with an elastic potential given by

d
W (I, I, J) = %Il + 5L+ 2(J) (4.6)
where ¢ and d are material constants, ® is a function twice continuously differentiable on
(0, 00). The inequalities (4.4), (4.5) produce

cH+dX2 >0, c+dr2,, >0, c+d (Wl + Al) + A2in A0 @’ >0 (4.7)

where the prime denotes differentiation with respect to the argument.

The maxima and minima values of D are among the values

NN (e+dAl) (e+dX])  4,k=1,2,3 (i#k)
and are positive because of (4.7). Due to (3.21) the Hadamard material allows only normal
shocks with the amplitude a = (1i - 1) n a=0<=[J]=0.

The system (4.1) takes the form

L % J-3ln=0, - (% - N_1> ]+ 5581 =0 (4.8)
o | (%c—l— (% - N_l) d+ <1>") ] =0 (4.9)
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Since
. Ny I
72 T2 N‘ = max, Am 4]_
(Nl»NrPll)IéDl—l <J2 ¢+ <J2 1) d) h (A d) ( 0)
Nl .[2 _
(Nl,Nr?S)E{Dl_l <ﬁc + (JZ N—1> d) - h()‘mma /\md)

where A (A, A;) & eA; D+ (A + A5%), the non zero solution exists only if
" (J) + h (Amax, Amd) >0 or & (J) + R(Amin, Amd) <0 (4.11)

¢From the inequalities (4.7) and (4.11) it follows that if strong ellipticity holds at I, I, J,
then
c+d\y, >0, c+dA2, >0, Aacdma +d (g2 + A72) + " (J)>0 (4.12)

m

In" it is proved that the conditions (4.12) are also the sufficient conditions,

Note that irrespectively of ellipticity and smallness of [/], the Poisson condition (3.10)
for the normal component of traction gives

[%] - (Elc—k (ﬁ - N_1> d) (s ) < J[%] < A Ama)  (4.13)

The relationships (4.12), (4.13) confirm that the material allows shock solution only if
ellipticity fails at some deformations. In addition, it follows from (4.13), that if ¢ > 0,
d20,c+d#0 and J: correspond to the coexistent deformations, then [®'] / [J] <o0.
The above results were arrived!3 in the context of an examination of the phase transition
zones and non-ellipticity zones construction. The same inequalities were obtained by
Rosakis” at another approach.
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